Ribbit

A Cost-Effective iOS Hearing Aid App

Developer’s Manual v1.1

Computer Science Department
Texas Christian University
May 2, 2016

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

Revision Signatures

By signing the following, the team member is stating that he has read the entire document and has
verified that the information contained within this document is accurate, relevant to the project, and

void of errors.

Name Signature Date
Duy Dang

Esteban Kleckner

Robert Kern

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

Revision History

Version General Description of Changes Date Completed

Initial Draft 5/1/16

Updated screenshot of QR generation 5/2/16

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

Contents

REVISION SIBNATUIES ittt ettt e ettt e e e e e s sttt e e e e s s e s aartateeeeeseaassbeaeeeeesssaassraaaeeeennns i
=Y T o] a1 o 11 o] Y P PPPPPPPPPPPRY ii
L INEFOAUCTION ittt sttt et e bt e bt e s bt e sat e st e e bt e bt e beesbeesmeeeateenbeesbeesaeesanenas 1
I R o U T o To 1] PP PPPTPTPRPPPPPNS 1
1.2 PrOJECT OVEIVIEW ... eeeiiiieieee ettt et e e ettt e e e e e st bttt e e e e s e s bt b teeeesesasaansbbaeeeesseasassbbaaeeeesssasnsnaaaeaens 1
1.3 OVErVIEW Of DOCUMENT ..cutiiiieiieeiteee ettt ettt ettt sa et e b e b e s b e s st e sabeebeesbeesaeesanenas 1
DAY H=T 0 T O AV L= V= YN 2
B0 VA5 (=T 0 00T 0] oo 1T o1 N 2
P A {1 o] oY A (@)Y o] o] [Tt 4 T o NP UPPPPROt 2
2.3 QR Code Prescription Generation WeDSItecoiciiiiieciiii et 2
3 DEVEIOPMENT SELUP ..eiiiee ettt ettt e e ettt e e e et e e e e et e e e eeateeeeeeabeeeeeaabeaeeesabaeeeeasseseeeanseeeeeansaeseennseeesanranas 3
N (O R 1YY= [o] 4 V=T o | AR 3
3.2 WED DEVEIOPMENT ...ttt e e e st e e s sate e e e e ratb e e e sstaeeesantaeeesssaeeeennsaeeeennsaeeennn 3
4 ACCEIEIATE FramMEWOIK ..ccoeiiiiieeiiie ettt ettt ettt e sb e et e st e st e e sabeesbt e e abeesabeeesabeesabeeenaseesabeeesaseenn 4
VAV o I T3 | OO OSSP PP PROPTON 4
4.2 HOW 0O WE USE P ...ttt ettt sttt et h e s he e st st e bt e bt e s bt e sbe e s at e s ateeabeesbeesbeesaeesaeesaneeabeenneennes 4
L3 2T o] oT1 AN o]] To%= i o] PSP 5
oI @ T o o] =T o - 14 o] o PPN 5
5.2 TOUCK ID ettt b e s st st e bt e bt e bt esae e s et st e e bt e bt e b e e reesaeeeaneenreen 6
5.3 Filter WIiNndOW GENEIAtioNc.coiiiiiiieiiiiii ettt ettt sttt ettt st st sttt e be e be e sme e st e eneeeneean 7
5.4 Gain WiNdOW GENEIATIONeeiuiiiiiiiiiiie ettt ettt st sb e st sme e sre e e snreesreessmeeesaneeesnnes 7
5.5 Combination WindoW GENEIatioNcoceiciieiiiiiieeenee et s s 9
5.6 Partitions OF UNILY cooiieiiiiiciiie sttt e et e e st e e e st a e e e s nab e e e e s abeeesensbeeeeenrenas 10
5.7 COr@ DaAta ..cuviiiiiiiiiiiiiii s s 12
5.8 QR REATEN ...ttt et s e e bt e s e e s b e e e sa bt e s b e e e be e e s b e e e ene e e enr e e s reeesree et 14
6 QR Code GENEration WEDSITEeiuiiiiieieeee ettt bbbttt be e sbe e saeesaee e 17
Lo (=Te [o a0 01T 0 1] o PRSP 17
Lo O CT=T g1t = o o PP 17

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

1 Introduction
1.1 Purpose

This document is intended to provide a detailed developers guide of the Ribbit iOS application, as well as
the prescription creation process. Included will be what is required to continue working on the Ribbit
iOS Application as well as how to access the QR Code Creation Website.

1.2 Project Overview

The objective of this project is to create an iOS application that functions similarly to a physical hearing
aid device, but at a fraction of the cost. The application works within the federal regulations concerning
the usage of hearing aids. The aim of the application is to correct the user's perception of sound by
changing the sound to fit their inability to hear certain frequencies.

1.3 Overview of Document

Section 2: In section 2, we give an overview of the different components of our project.
Section 3: In section 3, we go over the required set up for the project.

Section 4: In section 4, we give an overview of the main sections and classes of the Ribbit iOS
Application.

Section 5: In section 5, we go over the Accelerate framework in detail and how it is used within
the Ribbit iOS Application.

Section 6: In section 6, we give an overview of the QR Code Creation Website.

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

2 System Overview

2.1 System Components

Ribbit is composed of two parts: an i0OS Application and the QR Code Generation Website. To access
the QR code generation website, open a compatible web browser and navigate to the following URL:
http://tcuhearing-ribbitcu.rhcloud.com/.

2.2 Ribbit iOS Application

The main component of the project is the iOS application. This is what the user will interact with on a
regular basis. It is divided into four distinct parts: a home page, a table containing all prescriptions that
have been read in, a camera view to read in additional QR code prescriptions, and a view to read what
the prescription entails. More detail will be given to each part of the application in the following
sections.

2.3 QR Code Prescription Generation Website

The QR code generation website is available to anyone through the above URL. The website was
designed to allow an Audiologist or trained professional to rapidly generate prescriptions that will be
used by the Ribbit iOS application.

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

http://tcuhearing-ribbitcu.rhcloud.com/

3 Development Setup
3.1i0S Development

In order to develop for iOS using the new standard language Swift 2, a computer running at least OS X
10.11.4 is required. In addition to the hardware requirement, Xcode must be installed on the computer.
To install Xcode, if not already installed, visit
https://itunes.apple.com/us/app/xcode/id497799835?mt=12. All development takes place within
Xcode. In addition to the development computer, an Apple iPhone is also required. Any iPhone 5s or
later running at least iOS 7.0. All testing for the application will occur on the iPhone.

In order to put the application on the App Store, an Apple Developer Program is also required. If you are
not planning to upload the application to the App Store, an account is not required. What is required
regardless is an Apple ID. To create an Apple ID, go to https://appleid.apple.com/account.

Source code for the iOS portion of this project are located within the Source_Code/Ribbit/ folder of the
DVD.

3.2 Web Development

In order to develop an application for the internet, any computer with an active internet connection will
work. Cloud hosting for the QR Generation Website was done using Red Hat OpenShift,
https://www.openshift.com/. Contact Dr. Ma for credentials to access the hosting settings. Required
software include: a text editor, a web browser, RHC (Red Hat Cloud client — Instructions:
https://developers.openshift.com/managing-your-applications/client-tools.html), Ruby (required to run
RHC), and git (used to push code to OpenShift server and deploy the application).

Openshift’s getting started instructions for Windows covering Ruby, Red Hat Client (RHC), and git:
https://developers.openshift.com/getting-started/windows.html

Source code for the QR Creation Website is located within the Source_Code/QR_Creation/ folder of the
DVD.

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

https://itunes.apple.com/us/app/xcode/id497799835?mt=12
https://appleid.apple.com/account
https://www.openshift.com/
https://developers.openshift.com/getting-started/windows.html

4 Accelerate Framework
4.1 What s it

The Accelerate Framework is the API that Apple provides for vector mathematics and digital signal
processing, amongst other things. Specifically, for this project, we are using its vDSP portion. vDSP
contains methods for vector multiplication and Discrete Fourier Transforms that allow us to take a signal
in the time domain and transform it into the frequency domain.

4.2 How do we use it?

Within our application, the vDSP is used for its Fast Fourier Transform (FFT) methods. The FFT, and the
Inverse FFT allow us to process input signals and make adjustments to them before sending them back
to the user. The FFT takes the sound in the time domain, and transforms it into the frequency domain.
Processing sound in the frequency domain is often times more efficient than processing sound in the
time domain. Once the signal is in the frequency domain, we apply a Combination Window that filters
and amplifies the signal to fit the user’s prescription. The signal is then transformed back into the time
domain using the inverse FFT. Finally, the signal is stitched together using Partitions of Unity as a
method of Transitions Smoothing.

Another application of the vDSP Library within Ribbit is vector multiplication. When we are apply
filtering and gain modification to the signal, we create a mathematical window for the signal to be
multiplied by. This multiplication is done using SIMD operations, thus requiring the vDSP. All of this
multiplication occurs within FilterWindow.swift and SoundEngine.swift.

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

5 Ribbit Application

5.1 Class Explanation

The Ribbit iOS Application contains a total of 21 classes that are interconnected. Due to the way that the
Swift programming language interprets code, these different files are created purely for readability’s

sake. When Swift compiles the code, everything is read as one large file.

All of the application’s files are listed. More details for each is given in the respective sections.

AudioController.swift — This class contains functions related to sound I/O. Once the sound is
received, it is sent to SoundEngine.swift where it is processed.

ClassExtensions.swift — This class contains helper functions for the AudioController.
FFToolset.swift — This class contains the FFT functions that are used throughout the project.
Globals.swift — This class contains all of the global variables used throughout the project.
HomeViewController.swift — This is the class loaded by the Home Page ViewController. It
contains the functions to authenticate the user via Touch ID and to set the active prescription
label.

QRScanViewController.swift — This class contains the code to implement QR Code scanning as
well as how to load the information from the QR Codes into both the prescription table and into
Core Data.

Prescription.swift — This class contains all information related to the prescriptions, including the
RxData struct, our QR Code parser function, and the struct for representing Frequency Bands as
thresholds.

RxDataViewController.swift — This is the class loaded by the Rx Data View Controller. It contains
the functions to display the prescription as well as those needed to allow the user to set a
specific prescription as active.

RxTableViewController.swift — This class contains the functions needed to run the table view
used for the prescriptions. It also contains the necessary functions to interface with and load
from Core Data.

SoundEngine.swift — This class contains the necessary functions to process the sound, both
incoming and outgoing, and to combine both the Filter and Gain windows into one window.
WindowGeneration.swift — This class contains the necessary functions to create the Filter, Gain,
and Weight windows.

Each larger part of the application uses these classes, and more, in different ways. These will be

discussed in their respective sections.

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

5.2 Touch ID

When the Ribbit application is launched, it will ask for the user to input their Touch ID information. All
functionality is added with the HomeViewController.swift within authenticateUser(). All Touch ID
related coding requires the LocalAuthentication framework to be imported. If the user does not have
Touch ID enabled on their device, the application brings up another window so that they may enter a
password. If the user clicks “Cancel”, the application sends an “Authentication was cancelled by the
user” notification and closes the application. This is done in an effort to protect the patient’s data from

outside access. All Touch ID functionality is done by calling on methods created by Apple and extending

them to be used within the confines of the Ribbit application.

func authenticateUser() {
// Get the local authentication context.
let context = LAContext()

// Declare a NSError variable.
var error: NSError?

// Set the reason string that will appear on the authentication alert.
let reasenString = "Authentication is needed to access your prescriptions.”

{/f Check if the dewice can evaluate the policy.
if context.canEvaluatePolicy(LAPolicy.DeviceOwnerAuthenticationWithBiometrics, error: &error) {
[context .evaluatePolicy(LAPolicy.DeviceOwnerAuthenticationwithBiometrics, localizedReason: reasonString, reply:
{success: Bool, evalPolicyError: NSError?) —= Void in

if success {
print("Authentication succeeded")

}

else{
ff If authentication failed then show a message to the console with a short description.
// In case that the error is a user fallback, then show the password alert view.
print{evalPolicyError?. localizedDescription)

switch evalPolicyError!.code {

case LAError.SystemCancel.rawValue:
print({™Authentication was cancelled by the system")

//handles the case if the user hits cancels touchid authentication
f/displays a alert telling the user that either touchid or a password must be used, then closes the app
case LAError.UserCancel.rawValue
print("Authentication was cancelled by the user")
NSOperationQueue.mainQueue().add0perationWithBlock({ () -= Void in self.showCancelAlert(} }}
[NSThread .sleepForTimeInterval(s)
exit(@)

case LAError.UserFallback.rawValue:
print{"User selected to enter custom password")
NSOperationQueue.mainQueue().addOperationWithBlock({ () — VWoid in self.showPasswordAlert({) })
default:

print("Authentication failed")
NSOperationQueue.mainQueue().addOperationWithBlock({ ()} —> Void in self.showPasswordAlert({) })

H1

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

5.3 Filter Window Generation

The filter window is generated once at application start. It is considered a low pass frequency filter; it
has three characteristic parts: low pass, transition, and no pass. The low pass section is characterized by
ones, which allows the signal to maintain its original data. The transition section is necessary to avoid
any divide by zero errors, when applying the FFT or inverse FFT, it’s designed to be infinitely
differentiable. The final section is characterized by zeros, where the input signal will be eliminated from
the final output signal.

// Filtering

var curveSlice: [Float] = [0.939358, 0.494892, 0.11739] // infinitely differentiable curve slice
var lowPassSlice = [Float](count: 86, repeatedValue: 1.0) // part of the window that passes values
var filterWin = [Float](count: 846, repeatedValue: 0.0) // will become main filter window

// Create the Filter Window
func generateFilterWindow() {

// construct filter window

filterWin = lowPassSlice + curveSlice + filterWin

filterWin = filterWin + curveSlice.reverse() + lowPassSlice
// Debug Info

print("Filter Window Generated.")
print("|filterWin|: \(filterWin.count)")

5.4 Gain Window Generation

A new pair of gain windows (one for left ear, one for right ear) are generated every time a new
prescription is set to be active. The gain window contains values greater than or equal to 1 so that it will
increase the power (and ultimately the decibel level) of the frequency domain signal after multiplication.

// Gain
var stepWin = [Float](count: 11, repeatedValue: 1.0) // infinitely differentiable gain slice
var gainWinL = [Float](count: 1024, repeatedValue: 1.0) // will become main gain window (Left)
var gainWinR = [Float](count: 1024, repeatedValue: 1.0) // will become main gain window (Right)

However, in order to reduce the Gibbs Effect and artifacts caused by spectral leakages, to increase the
power of a frequency bin by a certain ratio, we will need to increase the neighboring bins to a
decreasing extents as it is getting farther from the current bin of focus. This is achieved by using a step
window which increases gradually from 1 to the desire ratio then decreases back to 1.

// Create Step Window
func generateStepWindow() {

stepWin[0] =1
stepWin[1] = 1.0280574
stepWin[2] = 1.163066
stepWin[3] = 1.336996
stepWin[4] = 1.472005
stepWin[5] = 1.500062
stepWin[6] = 1.472005
stepWin[7] = 1.336996
stepWin[8] = 1.163066
stepWin[9] = 1.0280574

stepWin[10] = 1
// Debug Info

print("Step Window Generated.")
print("|stepWin|: \(stepWin.count)")

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

The ratio will be determined based on the decibel level that the frequency needs to be increased by. The
dBDiff() function will take in the current frequency in focus, the hearing data of the user, and the
hearing data of a normal hearing person and returns this decibel level.

//
func dBDiff(frequency: Float, impaired: [HearingThreshold], normal: [HearingThreshold]) -> Float {

// local variables

var impaired_dB: Float
var normal_dB: Float =
var tempSlope: Float =

// local indices
var indexl = 0
var index2 = 0

// index of frequency bin 25@0Hz in prescription is 1, index of frequency bin 50@0Hz in prescription is 2
if (frequency >= 250 && frequency < 500) {

index1
index2

1
2
// index of frequency bin 500Hz in prescription is 2, index of frequency bin 100@Hz in prescription is 3

} else if (frequency >= 500 && frequency < 1000) {

index1
index2

2
3
// index of frequency bin 10@00Hz in prescription is 3, index of frequency bin 2@00@0Hz in prescription is 4
} else if (frequency >= 1000 && frequency < 2000) {

index1

3
index2 = 4

// index of frequency bin 2000Hz in prescription is 4, index of frequency bin 4000Hz in prescription is 5
} else if (frequency >= 2000 & frequency < 4000) {
indexl = 4
index2
} else if (frequency >= 4000 && frequency < 8000) {

// index of frequency bin 200@0Hz in prescription is 4, index of frequency bin 4000Hz in prescription is 5
} else if (frequency >= 2000 & frequency < 4000) {

indexl = 4
index2 = 5
} else if (frequency >= 4000 & frequency < 8000) {
indexl = 5
index2 = 6

}

// calculate the slope of the line connecting dB levels of 2 adjacent frequency bins in prescription in order to get the
corresponding dB level of the given frequency

tempSlope = (Float(impaired[index2].threshold!) - Float(impaired[index1].threshold!)) / (Float(impaired[index2].band!) -
Float(impaired[index1].band!))

impaired_dB = Float(impaired[index1].threshold!) + tempSlope * (frequency - Float(impaired[index1].band!))

tempSlope = (Float(normal[index2].threshold!) - Float(normal[index1].threshold!)) / (Float(normal[index2].band!) - Float
(normal[index1].band!))

normal_dB = Float(normal[index1].threshold!) + tempSlope * (frequency - Float(normall[index1].band!))

return impaired_dB - normal_dB

} (A

After that, this decibel level will be put in the formula: ratio = 10 A (decibel difference / 20) to get the
ratio. This ratio will be used to build a step window with the top value equal to the ratio. This step
window will then be put into the right section of the gain window. The process of creating new step
window to be put into the gain window will be done in a loop to cover all frequency bins in the
frequency domain. Notice that this loop will be done twice, each for one ear (left and right).

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

// Create Gain Window
func generateGainWindow() {

//Populate gainWindow
var frequency: Float = @
var gainNeeded: Float

=0
var magRatio: Float = 0

// Process Gain Window (Left Ear)
for var 1 =5; 1 <124 - 5; i+=5 {

frequency = Float(binWidth * (i + 1))

gainNeeded = dBDiff(frequency, impaired: rxActive!.leftEar!, normal: rxGain.leftEar!)
magRatio = pow(10, gainNeeded / 20)
for j in 0 ..< 11 {

gainWinL [i-5+j] = gainWinL[i-5+j] + ((stepWin[j] - 1) * (magRatio - 1) / 0.5)

if (1024 - (i -5 + j) < 1024) {
gainWinlL[1024 - (i -5+ j)] = gainWinL[1024 - (i =5 + j)] + ((stepwin[j] - 1) * (magRatio - 1) / 0.5)

}

// Process Gain Window (Right Ear)
for var i = 5; i <124 - 5; i+=5 {

frequency = Float(binWidth * (i + 1))
gainNeeded = dBDiff(frequency, impaired: rxActive!.rightEar!, normal: rxGain.rightEar!)

magRatio = pow(10, gainNeeded / 20)

for j in 0 ..< 11 {
gainWinR[i-5+j] = gainWinR[i-5+j] + ((stepWin[j] - 1) * (magRatio - 1) / 0.5)

if (1024 - (i -5 + j) < 1024) {
gainWinR[1024 - (1 - 5 + j)] = gainWinR[1024 - (i -5 + j)] + ((stepWwin[j] - 1) x (magRatio - 1) / 0.5)

}

// Debug Info

print("Gain Windows Generated.")
print("|gainWinL|: \(gainWinL.count)")
print("|gainWinR|: \(gainWinR.count)")

5.5 Combination Window Generation

// Global Windows

// Combined Window
var combinedWinL = [Float](count: 1024, repeatedValue: 1.0) // combined Filter and Gain window
var combinedwWinR = [Float](count: 1024, repeatedValue: 1.0) // combined Filter and Gain window

Every time a new hearing prescription (QR code) is set active, the application will call to
generateGainWindow() to generate a new pair of gain windows (for left and right ear) that reflects the
hearing data in the new prescription. After that, the Combination window for the left ear
(combineWinL) will be set to as the product of the Filter Window and the Gain Window for the left ear.
Similarly, the combination window for the right ear (combineWinR) will be set as the product of the
Filter Window and the new Gain Window for the right ear. The two combination windows are now ready
to be applied to the signal in the frequency domain.

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

10

5.6 Partitions of Unity

Partitions of Unity is the technique used to smooth out the mismatch in the transitions between
processed frames, which is caused by modifying discrete signal in the frequency domain using FFT and
IFFT. Our implementation of Partitions of Unity will modify the signal in not only adjacent signal frames
in the frequency domain but also the overlapping frames (50% overlapping before and after the current
frame in focus). Then, the two signals in the overlapping sections will be blended into each other by
gradually decreasing the weight of one while increasing that of the other (the total weight in any point
must be equal to 1).

As a result, for every frame that we output we will need to apply the combination window three times
(one to the current signal of focus, two to the overlapping frames). However, after optimization, our
implementation will only need to do this twice for every frame interval but the mechanism and effect
remain intact. To make several applications of combination window easier, we create the function
applyCombinedWindow() that can put the time domain signal into frequency domain, then modify by
multiplying the combination window to the frequency domain signal, then transform this processed
frequency domain signal back to the time domain.

func applyCombinedWindow(real: UnsafeMutablePointer<Float>, imag: UnsafeMutablePointer<Float>, channel: String) {

// Call Function to perform FFT, and return a list of (DSPSplitComplex, and FFTSetup) tuples
let setup = FFT(real, imagp: imag, length: fftLength)

if channel == "left" {

// Multiply signal

by Combined Window

vDSP_vmul(setup.SC.realp, 1, &combinedwinL, 1, setup.SC.realp, 1, length)
vDSP_vmul(setup.SC.imagp, 1, &combinedwWinL, 1, setup.SC.imagp, 1, length)
} else {
// Multiply signal by Combined Window
vDSP_vmul(setup.SC.realp, 1, &combinedWinR, 1, setup.SC.realp, 1, length)
vDSP_vmul(setup.SC.imagp, 1, &combinedWinR, 1, setup.SC.imagp, 1, length)
}
// Invert the FFTs
invFFT(setup.FFTSetup, merged: setup.SC, length: fftLength, size: frameSize)

// Destroy FFT Setup

vDSP_destroy_fftsetup(setup.FFTSetup)

After we have got the processed time domain signals (one current frame and two overlapping frames)
we will be able to apply the weight window and blend them together to create a time domain signal that
will smoothly transition into the next frame.

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

// SoundEngine.swift
// Ribbit

// Copyright © 2016 Texas Christian University. All rights reserved.

import Foundation
import Accelerate

func processSignal(buffer: [Float], channel: String) —> [Float] {

// Transition Smoothing local variable

var real = [Float](count: 1024, repeatedValue: 0.0)

var imag = [Float](count: 1024, repeatedValue: 0.0)

var overlapWin = [Float](count: 1024, repeatedValue: 0.0)
var overlapImag = [Float] (count: 1024, repeatedValue: 0.0)

if channel == "left" {
// Local Variables
real = prevWinL
prevWinL = buffer

// Assuming the "now" real buffer (used to be previous before the swap) has already been applyGainFilter
for i in 0 ..< 512 {

overlapWin[i] = real[i+512] // From real
overlapWin[i+512] = prevWinL[i] // From previousBuffer (storing current buffer)

}

} else {
// Local Variables
real = prevWinR
prevWinR = buffer

// Assuming the "now" real buffer (used to be previous before the swap) has already been applyGainFilter
for i in @ ..< 512 {

overlapWin[i] = real[i+512] // From real
overlapWin[i+512] = prevWinR[i] // From previousBuffer (storing current buffer)

}

// applyCombinedWindow to the real
applyCombinedWindow(&real, imag: &imag, channel: channel)

// Multiply real by weightWindow
vDSP_vmul(&real, 1, &weightWindow, 1, &real, 1, vDSP_Length(1024))

// applyGainFilter to overlapWin (note: overlapBufferl has already been applyGainFiltered)
applyCombinedWindow(&overlapWin, imag: &overlapImag, channel: channel)

// Multiply overlapWin by weightWindow
vDSP_vmul(&overlapWin, 1, &weightWindow, 1, &overlapWin, 1, vDSP_Length(1024))

// Add weighted right half of overlapBufferl to weighted left half of real
// Add weighted left half of overlapBuffer2 to weighted right half of real
// Put content of overlapBuffer2 into overlapBufferl
if channel == "left" {

for i in 512 ..< 1024 {

// Add weighted right half of overlapBufferl to weighted left half of real
// Add weighted left half of overlapBuffer2 to weighted right half of real
// Put content of overlapBuffer2 into overlapBufferl
if channel == "left" {

for i in 512 ..< 1024 {

real[i - 512] += overPrewWinL[i]

real[i] += overlapWin[i - 512]
overPrevWinL[i] = overlapWin[i]

}
} else {
for i in 512 ..< 1024 {
real[i - 512] += overPrevWinR[i]

real[i] += overlapWin[i - 512]
overPrevWinR[i] = overlapWin[i]

return real

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

12

5.7 Core Data

Core Data is Apple’s form of data persistence within their products. It is effectively a SQLite database
saved within the application’s file system. Core Data is intended to reduce the amount of code that is
used to save data, such as the prescriptions for Ribbit. In order to work, Core Data needs access to the
CoreData framework as well as a .xcdatamodellD file that includes the schema for the database that the
information to be saved in. For more detailed information on how to set up Core Data, go to
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/index.html#//a
pple ref/doc/uid/TP40001075-CH2-SW1.

When you create a new iOS project that includes Core Data, Xcode automatically creates the Core Data
stack that will be loaded every time that the application is loaded. This includes creating the
PersistentStoreController, the part that acts a scratch board for Core Data before things are saved, the
managedObjectModel, the model that includes the data currently saved within Core Data as well as
information waiting to be saved, and sets the saving URL within the application’s file system.

Sf MARK: — Core Data stack

lazy var applicationDocumentsDirectory: WSURL = {
// The directory the application uses to store the Core Data store file. This code uses a directory named "TCU.Ribbit" in the
application"'s documents Application Support directory.
let urls = NSFileManager.defaultManager().URLsForDirectory(.DocumentDirectory, inDomains: .UserDomainMask)
return urls[urls.count-1]

O

lazy var managedObjectModel: NSManagedObjectModel = {
/f The managed object model for the application. This property is not optional. It is a fatal error for the application not to
be able to find and load its model
let modelURL = WSBundle.mainBundle().URLForResource("Ribbit", withExtension: "momd"})!
return NSManagedObjectModel{contentsOfURL: modelURL)!
HO

lazy var persistentStoreCoordinator: NSPersistentStoreCoordinator = {

/{ The persistent store coordinator for the application. This implementation creates and returns a coordinator, having added
the store for the application to it. This property is optional since there are legitimate error conditions that could
cause the creation of the store to fail

// Create the coordinator and store

let coordinator = NSPersistentStoreCoordinator(managedObjectMedel: self.managedObjectModel)

let url = self.applicationDocumentsDirectory.URLByAppendingPathComponent {"SingleViewCoreData.sqlite®)

var failureReason = "There was an error creating or loading the application's saved data.”
do {

try coordinator.addPersistentStoreWithType(NS50LiteStoreType, configuration: nil, URL: wurl, options: nil
} catch {

// Report any error we got.

var dict = [String: AnyObject]()

dict[NSLocalizedDescriptionkKey] = "Failed to initialize the application's saved data"
dict[NSLocalizedFailureReasonErrorkey] = failureReason

dict [NSUnderlyingErrorKey] = error as NSError
let wrappedError = NSError({domain: "YOUR_ERROR_DOMAIN", code: 9998, uwserInfo: dict)
// Replace this with code to handle the error appropriately.
// abort() causes the application to generate a crash leg and terminate. You should not use this function in a shipping
application, although it may be useful during development.
MNSLog("Unresolved error \({wrappedError), ‘(wrappedError.userInfo}")
abort()
}

return coordinater
HO)

To incorporate the QR Reader into Core Data, you must set the incoming data as a savable format. This
means set the incoming metadata steams as an entity for the Core Data database. Once you have it in
the correct format, you can add it to the Prescription Table, and then save it into the Core Data
database.

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/index.html#//apple_ref/doc/uid/TP40001075-CH2-SW1
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/index.html#//apple_ref/doc/uid/TP40001075-CH2-SW1

13

ff create entity object
let entity = NSEntityDescription.entityForMame("AudioGram", inManagedObjectContext: managedContext)

//{ create prescription cbject
let prescription = NSManagedObject({entity: entity!, insertIntoManagedObjectContext: manapedContext)

[/ set prescription value, set only input string for later parsing
prescription.setValue(qrData!, forKey: “prescription")

/f save the context
do {

audiograms.append(prescription)
try managedContext.save()

} catch let err as NSError {
print{"Could not save!: “err) “n “err.userInfo)in"})
}

Once the new prescription data has been read into the Core Data database and has been loaded onto
the Prescription Table, you have to tell the Prescription Table to refresh so to get the new information.
This is done within the viewWi illAppear() function in the RxDataViewController.swift. This function is
called every time that the ViewController is loaded, or is force loaded by the refreshing the table. When
the table refreshes, this function tells the table to query the Core Data database and pull any new
prescriptions that are not already stored in the Prescription Table.

override func viewWillAppearianimated: Bool) {
super.viewWillAppear{animated)

£/ set up fetchRequest
let fetchReguest = WSFetchReguest(entityName: “AudioGram")

do {
let results = try managedContext.executeFetchRequest(fetchRequest)

print(" “n\n|audiograms|: \{audiograms.count)")
audiograms = results as! [NSManagedObject]
print(" |audiograms'|: ‘\(audiocgrams.count)yn\n")
let numberAudioGrams = audiograms.count
if numberAudioGrams != @ {
rxTable. removedll()
for 1 in @ ..= numberfudioGrams {
let audiogram = audiograms[i]
let ag5tring = audiogram.valusForKey("prescription™) as? String
rxTable.append{grParse{agString!)})
1

} catch let error as NSError {
print("Could not fetch!: “(error) “\n ‘\lerror.userInfo)}")
4

1
f/ Reloads tableView from external class

func refreshList{notification: NSMotification){
tableView. reloadData()
}

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

14

5.8 QR Reader

In order to easily and securely read in prescriptions, we have gone with a QR Reader approach. In order
to utilize a QR code reader in Swift, you have to import the AVFoundation framework, which stands for
Audio Video Foundation. This allows this class to have access to both the microphone and the cameras
on the phone. As this section of the application only uses the rear camera in order to successfully read in
the QR Code.

The code below shows how to initialize the rear camera and to start up the camera capture when the
ViewController is first loaded. The incoming information from the camera is read to a
AVCaptureMetadataOutput() method, as the incoming data is seen as metadata before it is given
context. This context is given when the call “captureMetadataOutput.metadataObjectTypes =
[AVMetadataObjectTypeQRCode]” is made. From that point on, the application is looking for anything
that looks like a QR Code.

After the camera is initialized and given context, you have to start up a videoPreviewlLayer, which allows
the user to see what the camera sees so they know where to aim the camera. After the
videoPreviewlayer is created and added to the view layer, you start the capture session. Then you had a
QR Code frame that appears when the camera finds a QR Code within its view area.

do {
input = try AVCaptureDevicelnput{device: captureDevice)
} catch let error as WSError {
print("Capture Device Error!: “\lerror) “wn \lerror.userInfol)")

// Initialize the captureSession object.
captureSession = AVCaptureSession()

/# Set the input device on the capture session.
captureSession?.addInput{imput as! AVCaptureInput)

/f Initialize a AVCaptureMetadataQutput object and set it as the output dewvice to the capture session.
let captureMetadatalutput = AVCaptureMetadataOutput()
captureSession?.add0utput(captureMetadatalutput)

// Set delegate and use the default dispatch queue to execute the call back
captureMetadataOutput.setMetadatalbjectsDelegate(self, queue: dispatch_get_main_gueue()})
captureMetadataOutput.metadatadbjectTypes = [AVMetadataObjectTypeQRCode

ff Initialize the video preview layer and add it as a sublayer to the viewPreview view's layer.
videoPreviewlLayer = AVCaptureVideoPreviewlLayer(session: captureSession)
videoPreviewlLayer?.videoGravity = AVLayerVideoGravityResizeAspectFill
videoPreviewlLayer?. frame = view.layer.bounds

view. layer.addsublayer(videoPreviewlayer!
captureSession?.startRunning()

// Initialize QR Code Frame to highlight the QR code

griodeFrameView = UIView()

griodeFrameView?. layer.borderColor = UIColor.greenColor().CGColor
grCodeFrameView?. layer.borderWidth = 2

view.addSubview(grCodeF rameView!)
view.bringSubviewToFront{grCodeFrameView!)

If a QR is found, the camera processes the metadata into a string so that it can be worked with. The
QRController makes sure that it contained the phrase “rx info”, parses the QR Code, displays the

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

15

prescription information inside of the QR code so the user can verify the information. After it is
displayed, the QRController checks to see if that Prescription is already in the table. If the prescription is
not there, the Prescription is loaded into the prescription table and saved as a new Prescription in Core
Data.

if metadataObj.stringValue != nil

let grData = metadatalbj.stringValue
if grData.containsString("rxinfo") {

/7 Parse QR Code and add to table
rxDat = qrParse(qrData)

// black magic compares if the previous object has been added before
/f equality is based on a keystring = <rxMame + patient + prescriber + date + debug>
if !rxTable.contains{ { $@.equals(rxDat!)! }) && !rxDat!.equals(rxGain)! {

// Generate Popup Message for Imported Prescription
var messageString = "Prescription W' + (rxDat?.rxMame!)! + "\" Imported!%\n" + {(rxDat?.date!)!

if (rxDat?.debug!}! == true {
messageString += "\nBase Gain Adjusted!™

let messageAlert = UIAlertController(title: "QR Code Info",message: messageString, preferredStyle:
UIAlertControllerStyle.Alert)

messageAlert.addAction(UIAlertAction(title: "Dismiss", style: UIAlertActionStyle.Default, handler: nil)

self.presentViewController(messageAlert, animated: true, completion: nil)

if debug == true; change gain basis if prescription is set to Debug
if {rxDat?.debug!}! = true {

print{("\n\nrxDebug was: \[rxGain}")

rxGain = rxDat!

print{"\nrxDebug is: \(rxGain)}\n")

/f otherwise, input prescription into table
} else {
ruTable.append{ (rxDat!})
print("|rxTable|: \{rxTable.count)")

// add new prescriptions to the persistent table

/f create entity object
let entity = NSEntityDescription.entityForMame("AudioGram", inManagedObjectContext: managedContext)

/{ create prescription object
let prescription = NSManagedObject(entity: entity!, insertIntoManagedObjectContext: managedContext)

ff set prescription value, set only input string for later parsing
prescription.setValue(qrData!, forKey: "prescription"”)

// save the context
do {

audiograms.append (prescription)
try managedContext.sawve()

} catch let err as NSError {
print{*Could not save!: ‘lerr) “n \{err.userInfolyn"}

/f send notification to reload tableView
NSNotificationCenter.defaultCenter().postNotificationName(" refreshMyTableView", object: nil
}
} else {
// Generate Popup Message for Imported Prescription
let messageString = "QR Code has already been scanned!™

let messageAlert = UIAlertController(title: "OR Code Info",message: messageString, preferredStyle:
UIAlertControllerStyle.Alert)

messageAlert.addAction(UIAlertAction(title: "Dismiss", style: UIAlertActionStyle.Default, handler: nil)
self.presentViewController(messageAlert, animated: true, completion: nil)

If the QR code contains any other information of than our prescription format, i.e. a hyperlink, the
captureSession displays a dialog saying “Invalid QR Code.”

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

} else {
rxDat = nil
let messageAlert = UIAlertController(title: “QR Code Info",message: “Invalid QR Code",preferredStyle:
UIAlertControllerStyle.Alert)

messageAlert.addAction{UIAlertAction(title: “Dismiss", style: UIAlertActionStyle.Default, handler: nil))
self.presentViewController(messageAlert, animated: true, completion: nil)

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

16

6 QR Code Generation Website

6.1 Red Hat OpenShift

For the creation of the prescription QR codes, we chose to use a web hosting service in Red Hat

17

OpenShift hosting, which allows us to host on a Red Hat Enterprise Linux server. For access to the online

console, go to https://www.openshift.com/, click on My Account, choose OpenShift Web Console, and

enter the credentials that Dr. Ma has given you. The only domain there should be “tcuhearing”. This is

the domain that hosts our QR Code generation website.

6.2 QR Generation

Our QR Code generation site is running HTMLS. All of the heavy lifting is done in Node.js 0.10. Node.js is

a scalable derivative of Javascript that allows multiple network connections at a given time. It has the
same syntax of Javascript and follows the same scripting formatting.

<script type="text/javascript”:
function genQRcode() {

var rxstring = "";

rxstring
rxstring
rx5tring
rx5tring
rx5tring

rx5tring
rx5tring
rx5tring
rx5tring
rx5tring
rx5tring
rx5tring
rx5tring
rx5tring

rx5tring
rx5tring
rx5tring
rx5tring
rx5tring
rx5tring
rxstring
rxstring
rxstring

rxString
rxString
rxString
rxString
rxString

rxString
rxString
rxString
rxString
rxString
rxString
rxString
rxString
rxString

rxString
rxString
rxString
rxstring
rxstring
rxstring
rxString
rxString
rxString

+ 4+ +++++++

"Rxtype:
"Patient:

"Presriber:

" 4 $("#infol").val() + "\n";
"+ $("#info2").val() + "\n";

" 4 §("#info3").val() + "\n";

"Date: " + $({"#infod").wval() + "\n";
"Debug: " + $("#info5").val() + "\n";

"leftear {\n";

"(125): "
"(25@8): "
"(sea): "
" (1008) :
" (2008) :
" (4808) :
" (8008) :
AL

"rightear
"(125): "
"(25@8): "
"(sea): "
"(1008):
"(2008):
"(4000):
"(Beed):
"1

£("#QR_frame"}.val("");

$("#QR_frame").qrecode({

"render™: “div",
"size™: 250,
"color™: "#3a3",

"text™: rxString

Hi
b

</script>

+ $("#info6™).val(
+ $("#info7™).val(
+ $("#info8™).val(
+ 3("#info8"}.val

+ $("#infol@").
+ $("#infoll").
+ $("#infol2").

"5

va

)
)
)
(
val
1
val

)

Q
QO
O

+ $("#infol3").val()
+ $("#info14™).val()
+ &("#infol5").val()

+ §("#infol6").
+ §("#infol7").
+ §("#infols").
+ §("#infolo").

val(}
val(}
val(}
val(}

"\n";
"\n";
"\n";
+ "\n";

+
+
+

=
=
+

“\n";
“\n";
"\n";

"\n";
"\n";
"\n"3

"\n";
"\n";
"\n";
"\n";

All computation for the QR Code is done on the user’s browser so that no medical information is sent of

the internet. This is done for medical information security.

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

https://www.openshift.com/

18

Glossary of Terms

Gibb’s Effect: the effects related to signal mismatch happening when using FFT and IFFT
in discrete signal processing

Javascript: A scripting programming language used to make webpages dynamic.
QR Code: A form of bar code used to link different websites or to send information

Spectral Leakage: Occurs when an incoming frequency does not match a frequency bin
in the FFT

Touch ID: A security mechanism used to maintain exclusive access based on a user’s

fingerprint

© 2015 - 2016 Computer Science Department: Texas Christian University. All Rights Reserved.

