

Copyright ©2009-2010 Computer Science Department, Texas Christian University

Developer
Manual

FROG Recognizer of
Gestures

Team Better Recognize
Version 1.0
April 13, 2010

Developer Manual FROG

Revision Sign-off Page i

Revision Sign-off
By signing the following the team member asserts that he/she has read the entire document and
has, to the best of his or her knowledge, found the information contained herein to be accurate,
relevant, and free of typographical error.

Name Signature Date

Josh
Alvord

Alex
Grosso

Jose
Marquez

Sneha
Popley

Phillip
Stromberg

Ford
Wesner

Developer Manual FROG

Revision History Page ii

Revision History
The following is a history of revisions of this document.

Document Version Date Edited Changes

Version 1.0 04/13/10 Initial Draft

Developer Manual FROG

Table of Contents Page iii

Table of Contents
Revision Sign-off ... i
Revision History ... ii
1. Introduction to the System .. 1

1.1 What is FROG? ... 1

1.2 How FROG is Organized .. 1

1.3 Before You Get Started… ... 1

1.3.1 Install the JDK .. 1

1.3.2 Download the latest FROG source ... 1

2. Developing a Device Plug-in .. 2

2.1 Implementing the Interface ... 2

2.1.1 Add Filter .. 2

2.1.2 Calibrate .. 2

2.1.3 Connect ... 2

2.1.4 Disconnect... 2

2.1.5 Discover .. 3

2.1.6 Get Active Filters .. 3

2.1.7 Get Available Filters ... 3

2.1.8 Get Sample Rate ... 3

2.1.9 Remove Filter.. 3

2.1.10 Set Sample Rate .. 3

2.2 The Importance of the Device Class ... 3

2.3 Adding the Interface to FROG .. 3

3. Developing a Filter ... 4

3.1 Implementing the Interface ... 4

3.1.1 Filter .. 4

3.1.2 Setup ... 4

3.2 Adding the Interface to FROG .. 4

4. Developing a Quantizer .. 5

4.1 Implementing the Interface ... 5

4.1.1 Translate .. 5

4.2 Adding the Interface to FROG .. 5

5. Developing a Gesture Model .. 6

5.1 Implementing the Interface ... 6

Developer Manual FROG

Table of Contents Page iv

5.1.1 Statistical Methods .. 6

5.1.2 Train .. 6

5.2 Adding the Interface to FROG .. 7

6. Developing a Classifier ... 8

6.1 Implementing the Interface ... 8

6.2 Adding the Interface to FROG .. 8

Developer Manual FROG

Introduction Page 1

1. Introduction to the System

1.1 What is FROG?

FROG is a gesture recognition framework coded in Java. It is unique in that all its parts are
designed to be swapped out with custom components. The training and recognition process goes
through many steps, and many of those steps can easily be rewritten or replaced with a
developer’s own process.

1.2 How FROG is Organized

FROG is split up in to two main “pipelines.” One is for training, while the other is for
recognition. These two pipelines are contained within and managed by the Session class. A
Session is responsible for the majority of work that FROG performs on gestures.

The training pipeline is made up of three parts: Filters, Quantizer, and GestureModel. The
recognition pipeline is made up of four parts: Filters, Quantizer, GestureModel and Classifier.
These interfaces can be found in the frog package.

1.3 Before You Get Started…

1.3.1 Install the JDK

For developing in Java, a Java Development Kit, or JDK, is required. A JDK can be obtained
from http://java.sun.com/javase/downloads/index.jsp. The setup process is a platform-
independent, easy-to-follow wizard.

1.3.2 Download the latest FROG source

Source code for the FROG project can be found on the FROG Project CD. The source code
contains all the .java source files as well as any images and sound effects used in the creation of
FROG.

http://java.sun.com/javase/downloads/index.jsp�

Developer Manual FROG

Developing a Device Plug-in Page 2

2. Developing a Device Plug-in
This type of plug-in will allow the use of a particular device as a source of acceleration data for
the FROG system. Device plug-ins are loaded by FROG when the program is started.

2.1 Implementing the Interface

For device plug-ins to work with FROG, they will need to implement the interface: Plugin.
Plugin will contain several methods that FROG will need in order to communicate effectively
with your Device. Important methods in the Plugin interface are described in detail in the next
few sections. Also consult the Javadoc for FROG on the FROG Project CD for more details.

2.1.1 Add Filter

Some devices support on-board filtering. This method allows additional filters to be added to the
Device remotely. A list of filters available for a particular plug-in can be returned from the
getAvailFilters method.

2.1.2 Calibrate

If a device supports calibration, this method will allow for calibrating it. The calibrate method
can launch its own dialog window or message to help the user understand how to calibrate a
device. Calibration is performed to eliminate factors that can affect the measurement accuracy
over time. Some accelerometers, for instance, might experience reduced accuracy over time due
to their handling or the constant effect of gravity on their components. An example calibration
technique is to set the accelerometer to measure a standard value. In the case of acceleration, this
could be achieved by laying a device flat on a surface so that an “at rest” reading can be taken.
This can then be equated to the standard value of 1G since we know to expect this as the
acceleration under those conditions.

2.1.3 Connect

The connect method formally connects to a chosen Device. Connecting to a device generally
means attaching a DeviceListener so that incoming accelerations can be processed by a Session
object.

2.1.4 Disconnect

Notify a device that it is no longer needed for acceleration input. This method should perform the
necessary clean up for connections to a device and also stop anything from listening to the
device.

Developer Manual FROG

Developing a Device Plug-in Page 3

2.1.5 Discover

Discover runs in its own thread and returns immediately. The Vector of Devices received as a
parameter will be filled with nearby devices as they are detected. These Devices are not yet
connected and therefore require the connect method to be called on the one to be utilized for
acceleration input.

2.1.6 Get Active Filters

Returns the filters that are currently in use on the device. If there are no filters in use or the
device does not support filtering, this method does nothing at all.

2.1.7 Get Available Filters

Returns the filters that are available for the device (if the device supports filtering).

2.1.8 Get Sample Rate

Returns the sample rate of the device in hertz. The sample rate is how many times per second a
reading is taken from the device’s accelerometers.

2.1.9 Remove Filter

Removes a filter that is in use on the device. If the device has no filters or the device does not
support filtering, this method does nothing.

2.1.10 Set Sample Rate

Assigns a new sampling frequency to this device in hertz. Some devices do not support changing
their sample rate in which case this method will do nothing.

2.2 The Importance of the Device Class

Aside from initializing them, FROG never interacts directly with any plug-in (classes
implementing the Plugin interface). FROG interacts instead with an intermediary object known
as the Device object. Device objects are created by plug-ins when the Discover method is called.
Device objects have a reference back to the plug-in that created them which facilitates their own
methods. Device objects are final, meaning there is no need to create your own special version of
the Device class. All Devices look the same to FROG and it is therefore the responsibility of the
Device to keep track of the plug-in that backs it.

2.3 Adding the Interface to FROG

FROG is designed to automatically load any classes that implement the Plugin interface in its
JAR at runtime. Adding your particular plug-in will require that you add your classes to the JAR
as well as any libraries they are dependent on to its classpath.

Developer Manual FROG

Developing a Filter Page 4

3. Developing a Filter
The Filter interface allows an implementing class to operate on the incoming acceleration data
from a device. FROG contains two implementations: IdleState and DirectorialEquivalence.
FROG has a list of available filters in addition to a chain of active filters that work on
acceleration data in the order in which they were added to the chain.

3.1 Implementing the Interface

A class that implements Filter must contain a constructor with no parameters as FROG
instantiates Filter objects with the newInstance() method. Filters provide the following methods
for performing work on incoming acceleration data.

3.1.1 Filter

The filter method takes an acceleration vector as its input and either returns another acceleration
vector representing the result of filtering, or returns null in the case of a removal. In this sense,
an acceleration vector should be assigned to its filtered value for replacement, as filter should not
directly modify the parameter vector. In the case of FROG, filter only returns the original vector
or null as the Filters implemented deal only with removal of data (as opposed to modification).
This is not, however, a general constraint on the filter method.

3.1.2 Setup

Given a comma-separated parameter String, changes the behavior of the filter method. Some
filters may require no arguments; others may require many. The comma-separated values can be
anything you wish but remember to document what parameters can be changed and how to
change them with the String.

3.2 Adding the Interface to FROG

FROG contains an array of filters as a static field. For your filter to be useable in FROG it must
be listed in that array. Once it is in the array, Session objects will be able to instantiate it and add
it to their filter chains.

Developer Manual FROG

Developing a Quantizer Page 5

4. Developing a Quantizer
The Quantizer interface specifies a data quantizer object that operates purely on Accel3D data.
FROG contains only a single implementation: Kmeans. To extend the quantizing capabilities of
FROG, one must implement the interface as well as tie the Quantizer to a GestureModel and/or
Session as detailed below.

4.1 Implementing the Interface

A new implementation of Quantizer should be assigned a unique type index to be denoted in
Quantizer interface and accessed by getType. The NUM_TYPES_SUPPORTED field should be
increased to signify the additional implementation. Note that the type indices should range
exactly from 0 to the value of (NUM_TYPES_SUPPORTED -1). It is assumed that there is an
implementation for every positive index less than NUM_TYPES_SUPPORTED.

4.1.1 Translate

To implement Quantizer, the primary task lies in implementing the translate method. This
method receives an Accel3D and returns an appropriate integer representative, effectively
translating Accel3D’s into an integer alphabet. The alphabet size (total number of all potential
return values) should be equivalent to the size of the quantizer, as accessed by getSize. In
general, the translate method is assumed to be accessible validly at any time after the Quantizer
object is constructed. This means that if any training (e.g. the k-means algorithm in Kmeans) of
the Quantizer is required, it should be carried out from within the constructor or expressly noted
in the documentation for the overridden translate method.

4.2 Adding the Interface to FROG

FROG contains one GestureModel implementation, GestureHMM, which requires quantizing to
perform its duties. Thus GestureHMM could be extended to utilize quantizers other than
Kmeans. Its training uses only generic calls to a Quantizer object, but the class itself lacks a
method for training using quantizers aside from Kmeans (as no other implementations are
currently supported by FROG). To implement additional Quantizer support in GestureHMM,
additional training methods that accept appropriate parameters must be added. In a parallel
fashion, new training methods should be added to Session that accept appropriate Quantizer
parameters.

Developer Manual FROG

Developing a Gesture Model Page 6

5. Developing a Gesture Model
The GestureModel interface specifies a three dimensional acceleration-based gesture modeling
object. FROG contains only a single implementation: GestureHMM. To extend the modeling
capabilities of FROG, one must implement the GestureModel interface as well as tie the
GestureModel to Session as detailed below.

5.1 Implementing the Interface

A new implementation of GestureModel should be assigned a unique type index to be denoted in
the GestureModel interface and accessed by getType. The NUM_TYPES_SUPPORTED field
should be increased to signify the additional implementation. Note that the type indices should
range exactly from 0 to the value of (NUM_TYPES_SUPPORTED -1). It is assumed that there is
an implementation for every positive index less than NUM_TYPES_SUPPORTED.

In addition to a series of traditional accessor and modifier methods, the GestureModel interface
contains specifications for several statistical tracking methods as well as the important train
method. Only the statistical and training methods will be overviewed here. For information on all
GestureModel methods, consult the FROG Javadoc on the FROG Project CD.

5.1.1 Statistical Methods

The GestureModel specification is designed so as to require any implementation to track
statistical data relevant to the gesture training and recognition process. The methods correct,
incorrect, notRecognized, and matchedWithProbability should be implemented so as to modify
and record statistics related to recognition. For example, correct should at a minimum increment
a counter for correct recognition events. The methods correct, incorrect, and notRecognized
should correspond naturally with getNumCorrect, getNumIncorrect, and getNumNotRecognized.
The method matchedWithProbability should be implemented to modify a running average
recognition probability statistic (so as to interact naturally with
getAverageRecognitionProbability).

5.1.2 Train

The FROG GestureModel specification assumes a modeling approach that requires some form of
training to represent a gesture after instantiation. The train method should be implemented to
train the model based on a gesture set provided in construction or over time. As train requires no
parameters, any implementation of GestureModel should receive all parameters in construction,
utilize modifier methods to set parameters, make use of default parameters, include additional
training methods that require additional parameters, or any combination of the above. In
addition, the getProbability method is not assumed to return valid data until training has
occurred.

Developer Manual FROG

Developing a Gesture Model Page 7

5.2 Adding the Interface to FROG

FROG deals with GestureModel objects within the Session class. The session class has its own
train method(s) that are responsible for training individual GestureModel objects. The train()
and train(int index) methods are set up using a switch statement on the current model type of the
Session. Currently, however, as there is only a single GestureModel implementation,
GestureHMM, there is only a single case in this block. This is the case of a model type
corresponding to GestureHMM. To insert a new GestureModel implementation, simply add an
additional case statement corresponding to its particular type index within these training methods
that performs training on the current or specified GestureModel object.

If, however, the implementation requires additional parameters for construction or training,
additional training methods can be implemented to accommodate. The additional training
methods for GestureHMM can be used as an example for how to construct these. Training
methods focused on a specific implementation of GestureModel must validate that the Session is
currently using the correct model type and report training failure if this is not the case.

Developer Manual FROG

Developing a Classifier Page 8

6. Developing a Classifier
The Classifier interface specifies a GestureModel classification object. A Classifier requires a set
of GestureModel objects with which to perform classification.

6.1 Implementing the Interface

A new implementation of Classifier should be assigned a unique type index to be denoted in
Classifier interface and accessed by getType. The NUM_TYPES_SUPPORTED field should be
increased to signify the additional implementation. Note that the type indices should range
exactly from 0 to the value of (NUM_TYPES_SUPPORTED - 1). It is assumed that there is an
implementation for every positive index less than NUM_TYPES_SUPPORTED.

Classifier presents a fairly easy situation for implementation. The method classify should return
the GestureModel recognized for a given gesture instance. The method getLastProbability
should return the recognition probability of the last classification event. The accessor getModels
should return the set of GestureModels contained in the Classifier.

6.2 Adding the Interface to FROG

FROG deals with Classifier objects within the Session class. Adding an additional Classifier
implementation to FROG is as simple as modifying the private createClassifier method in
Session. Similarly to the GestureModel situation, this method functions using a switch statement
on the current classifier type of the Session. For each new Classifier implementation, a new case
statement for its particular type index should be added. The case statement should assign the
classifier variable to a Classifier object of type corresponding to the type index.

	Revision Sign-off
	Revision History
	Introduction to the System
	What is FROG?
	How FROG is Organized
	Before You Get Started…
	Install the JDK
	Download the latest FROG source

	Developing a Device Plug-in
	Implementing the Interface
	Add Filter
	Calibrate
	Connect
	Disconnect
	Discover
	Get Active Filters
	Get Available Filters
	Get Sample Rate
	Remove Filter
	Set Sample Rate

	The Importance of the Device Class
	Adding the Interface to FROG

	Developing a Filter
	Implementing the Interface
	Filter
	Setup

	Adding the Interface to FROG

	Developing a Quantizer
	Implementing the Interface
	Translate

	Adding the Interface to FROG

	Developing a Gesture Model
	Implementing the Interface
	Statistical Methods
	Train

	Adding the Interface to FROG

	Developing a Classifier
	Implementing the Interface
	Adding the Interface to FROG

